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Abstract 
An increase of the NLC repetition rate from 120 Hz to 180 Hz while keeping 
other interaction point parameters unchanged will require changes in the 
design of the damping rings to provide an increased damping rate.  In this 
note, we describe an initial lattice design for a ring that provides the 
required damping at 90 Hz.  Two such rings, operated in series or in 
parallel, would provide the required damping for a 180 Hz rep rate. 

 

1 Introduction 
The increase of the NLC rep rate from 120 Hz to 180 Hz requires a redesign of the 
damping rings to achieve a shorter damping time.  There are several approaches to this 
work; in this note, we describe a lattice that may be considered an initial design for a 
damping ring operating at 90 Hz.  Two such rings, operated in series or in parallel, would 
achieve the required damping for a 180 Hz rep rate.  We do not attempt a rigorous 
analysis of the parameter space leading to an optimized choice of lattice parameters, as 
has been presented elsewhere1, but rather present a lattice design resulting from a 
partially systematic approach to damping ring design.  Our intention has been to produce 
a lattice that meets most of the major requirements for a damping ring, and that can act as 
a baseline for further work to improve and refine the design. 
 
Recent work has shown the benefits of including a gradient in the main dipoles, 
particularly in respect of the dynamic aperture2.  However, for the present work we use 
dipoles with no field gradient.  Gradient bends are undesirable from a practical point of 
view, since they give tighter tolerances on magnet alignment, and the aim here has been 
to see what may be achieved without gradients in the dipoles.  Also, it is known that the 
damping wiggler is likely to have significant impact on the nonlinear dynamics of the 
lattice.  For the present, though, we model the dipole as a sequence of drifts and dipoles, 
i.e. as a linear element. 

2 Design Process 
A systematic approach to the design of damping rings, with particular reference to the 
NLC, has been described by Emma and Raubenheimer1.  In the design of the present 
lattice, we adopted their general approach, which is to fix the principal parameters 
successively, based on the input and required output beam properties and general 
relationships derived between the various parameters. 
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2.1 Energy and Lattice Structure 
We have not re-examined the choice of machine energy, which is decided by 
consideration of circumference, magnet design, collective effects, spin polarization and 
operating costs.  The energy used for this and recent studies is 1.98 GeV.  Also, the 
arguments in favor of a TME structure in the arcs are compelling, and we see no way to 
achieve the required emittance by opting, say, for a TBA structure, without significantly 
increasing the circumference. 

2.2 Emittance 
The natural emittance of a lattice constructed entirely from TME cells is given by the 
standard formula: 
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The properties of the extracted beam fix the required natural emittance to be below 3.0 
mm mrad, and assuming the cells to be perfectly tuned, the above formula gives the 
bending angle per dipole as 0.1842, or a minimum of 35 dipoles.  Some detuning, 
required to improve the dynamics of the lattice, will give an emittance increase, and we 
expect the wiggler to give a reduction.  Our design uses 34 complete TME cells in the 
arcs, and four half dipoles in the matching cells to the straights. 

2.3 Store Time, Damping Time and Number of Trains Stored 
The store time, τN , is the length of time each bunch train remains in the damping ring, in 

units of the damping time.  The extracted vertical emittance is given by: 

( )ττ γε
κ

κγεγε NN
injyexty

2
0

2
,, e1

1
e −− −

+
+=  

 

where κ  is the coupling.  Emma and Raubenheimer1 discuss considerations leading to a 
choice for τN .  The considerations include the alignment tolerances on the lattice.  A 

value of approximately 4.8 is appropriate.  For a given store time and machine rep rate, 
the damping time is proportional to the number of bunch trains stored: 
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Previous studies have focused on three stored trains at a rep rate of 120 Hz.  If the rep 
rate is effectively reduced to 90 Hz (by having two rings operating at 180 Hz), then the 
number of trains can be reduced to two, with only an approximate 10% drop in the 
required damping time.  However, the reduction in circumference accompanying the cut 
in the number of stored trains, has a significant impact on the damping time, and allows a 
corresponding reduction in wiggler length.  For a rep rate of 180 Hz, assuming two bunch 
trains stored in each of two damping rings for 4.8 damping times, the required damping 
time is 4.6 ms. 

2.4 Circumference 
In the NLC, the bunch trains will be 95 bunches long, with a bunch separation of 2.8 ns.  
Allowing for kicker rise/fall times of 65 ns, the space required per bunch train in the 
damping ring is 98.39 m.  For two bunch trains, therefore, we choose a circumference 
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close to 200 m.  The required damping time as a function of the number of trains stored, 
and of the machine rep rate, is shown in Figure 1. 
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Figure 1 

Required damping time as a function of number of trains stored. 

 

2.5 Dipole Field and Wiggler Integrated Field 
The (vertical) damping time of the ring is given by:  
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where 0U  is the energy loss per turn from the dipoles: 
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wU  is the energy loss per turn from the wiggler: 
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and 0f  is the revolution frequency of the particles.  For a given number of stored bunch 

trains, the damping time is fixed by the rep rate, and the injected and extracted beam 
parameters.  With a fixed energy and circumference, therefore, the only free parameters 
are the dipole field and the integrated wiggler field.  Figure 2 shows how these 
parameters are related, for any number of bunch trains (assuming minimum lattice 
circumference). 
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Figure 2 

Relationship between integrated wiggler field and dipole field strength, assuming 
minimum lattice circumference for storing a given number of bunch trains. 

 
The benefits of operating two damping rings at 90 Hz as opposed to a single ring at 180 
Hz are clearly evident.  There is a weaker dependence on the dipole field, with stronger 
fields being preferred to reduce the required strength of the wiggler.  However, the dipole 
field also has an effect on the momentum compaction, and hence on the bunch length.  In 
general, the momentum compaction is given by: 
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where the integral is taken over the whole lattice, and ρ  is the local radius of curvature of 
the closed orbit.  For the case of a TME lattice, which is tuned with 

24

2ρθη =  
 

in the center of the dipole, we find that 
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(Here we neglect the effects of the wiggler, and of detuning the cell).  Hence, for a given 
energy and number of cells, the momentum compaction varies in inverse proportion to 
the dipole field.  A large momentum compaction reduces sensitivity to energy errors 
through changes in closed orbit circumference, and reduces sensitivity to collective 
effects by giving a large bunch length.  Emma and Raubenheimer1 set a goal of 

4105 −×≥α .  We select, somewhat arbitrarily, a dipole field of 1.2 T as giving a low 
requirement for the wiggler strength, while not pushing the momentum compaction too 
far below 4105 −×  (the final value for the momentum compaction in our lattice design is 
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41035.4 −× .  There is a dependence of the momentum compaction on the detuning factor 
of the cell, but this is comparatively weak. 

2.6 Lattice Construction 
Having selected the major parameters, we are in a position to construct the TME cell that 
will form the basic unit for the damping ring arcs.  The additional constraints we imposed 
for ourselves were: 
• no magnetic field gradient in the dipole; 
• minimum space of 0.35 m on either side of the dipole, to allow for engineering 

components, radiation extraction etc.; 
• minimum space of 0.40 m between adjacent quadrupoles; 
• cell tuned as close as possible to the conditions for minimum emittance; 
• overall length of cell as short as possible; 
• phase advances horizontally and vertically controlled to give good dynamic aperture 

for a conceptual lattice constructed entirely from TME cells; 
• beta functions and dispersion controlled to allow satisfactory correction of 

chromaticity, with minimum sextupole strengths. 
 
The quadrupole component was omitted from the dipole to see what could be achieved in 
terms of dynamic aperture under these conditions.  Note that recent work2 has found a 
significant benefit of allowing some gradient in the bending magnet.  Control of the phase 
advance in particular was problematic; for a TME cell with maximized dispersion, there 
is a unique relationship between the horizontal phase advance and the detuning factor.  
We allowed some extra flexibility by not restricting ourselves to the condition for 
maximum dispersion.  Although this leads to stronger sextupoles for correcting 
chromaticity, we find in practice that the phase advance is a more significant quantity for 
the dynamic aperture than the strengths of the sextupoles.  We discuss the issues in more 
detail in section 5 below.  Cell structures with three quadrupoles and four quadrupoles 
were investigated.  In practice, we found that the four-quadrupole structure gave a phase 
advance closer to the required value, while still allowing a compact lattice. 
 
Having constructed the basic TME cell, we construct matching sections into the straights.  
The matching sections use half dipoles, as this facilitates fitting the dispersion and its 
gradient to zero at the end of the bending magnet. 
 
The lengths of the straight sections are determined by the required length of the wiggler.  
With the parameter choices indicated above, an integrated wiggler field of a little over 60 
T2m is needed to give the required damping; assuming a peak wiggler field of 2.15 T, this 
gives a total wiggler length of around 26 m.  The precise length of the wiggler will 
depend on the exact circumference and TME cell detuning.  The wiggler is split into 
sections of 4.624 m.  The quadrupoles between the wiggler sections are tuned to keep the 
mean value of xβ  low, as this reduces the contribution of the wiggler to the natural 

emittance.  Attempts were made to fix the phase advances over the straight sections to 
integer values.  If achieved, this would (in the linear approximation) make the straights 
invisible to the particle dynamics, and the dynamic aperture of a TME cell would then 
effectively determine the dynamic aperture of the lattice.  In practice, we achieved the 
control of the phase advance in the horizontal, but not in the vertical plane.  
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Consequently, the horizontal dynamics are little affected by the straight sections, but the 
vertical dynamic aperture is reduced (see the discussion below). 
 
Lattice functions for different sections of the lattice are shown in Figure 3 through Figure 
6. 
 

 
Figure 3 

Lattice functions in an arc (TME) cell. 

 

 
Figure 4 

Lattice functions in matching cell between arc and straight section. 
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Figure 5 

Lattice functions through the wiggler straight. 

 

 
Figure 6 

Lattice functions for the complete lattice. 
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3 Chromatic Properties 
Although the sextupoles are adjusted to give zero first-order chromaticity, the tune shift 
with momentum can still be significant, as a result of large higher order chromaticity.  
The variation of horizontal and vertical tune with momentum deviations up to ±0.6% are 
shown in Figure 7, and the working point in tune space is shown in Figure 8.  As no effort 
has been made so far to reduce the higher order chromaticities, the tune shifts with 
momentum are large, leading to a small momentum aperture. 
 

 
Figure 7 

Variation of tunes with momentum, up to ±0.6% momentum deviation. 

 

 
Figure 8 

Working point of the lattice in tune space.  The curved line near the center 
of the plot shows variation of the tune with momentum deviations up to 
±0.6%.  Resonance lines up to sixth order are shown. 
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We note that the lattice tunes have a strong effect on the magnet alignment tolerances, 
and integer and half-integer values in particular are to be avoided.  In this respect, the 
present working point is unsuitable, since it lies close to an integer resonance. 

4 Lattice and Wiggler Emittance 
The minimum emittance for the lattice is achieved when the horizontal beta and 
dispersion functions are minimized at the centers of the dipoles, with values 
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With a field of 1.2 T, the main dipoles in the lattice have a length of 0.96 m.  The 

optimum lattice function values are then 0β
(

=0.124 m and 0η( =6.98×10-3 m.  If the cell is 

detuned such that 00 βββ
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It is straightforward to show that, for a given rε , the maximum dispersion (and hence 
lowest chromatic sextupole strengths) is given by the conditions: 
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For our present lattice, in the center of the arc cell dipoles, the lattice functions take 
values of 0.1884 m for xβ  and 0.00860 m for xη ; this results in a detuning factor 

11.1=rε , with =rβ  1.52 and =rη 1.23.  Thus, we do not satisfy the condition rr εβ =  
for maximum dispersion for a given detuning, and we expect the sextupoles to be rather 
stronger than strictly necessary.  However, the values we obtain correspond to reasonable 
cancellation between adjacent sextupoles resulting from the phase advance.  In practice, 
we find this a more effective way to achieve a good dynamic aperture than minimizing 
the sextupole strengths (see Section 5). 
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Figure 9 

Lattice function relationship for a fixed detuning factor rε =1.11.  
The current working point gives much lower dispersion than 
potentially possible for the emittance, leading to greater than 
necessary sextupole strengths. 

 
The theoretical minimum normalized emittance of a 1.98 GeV lattice constructed with 36 
dipoles is 2.55 mm mrad.  With the detuning factor of 1.11, the natural emittance is 2.83 
mm mrad (this does not include the small additional increase from the dipoles in the 
matching cells adjacent to the straight sections).  However, with the wiggler inserted in 
the lattice, we find that the emittance drops to 2.35 mm mrad.  The reason for this is that 
the emittance reduction from the wiggler’s additional damping is not fully compensated 
by the emittance of the wiggler itself.  This is readily understood if we consider the 
expression for the emittance of the lattice in the presence of the wiggler1,4: 
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The wiggler contribution to the emittance is determined by the mean horizontal beta 
function, xβ  in the wiggler, and by the ratio of energy loss in the wiggler to the energy 

loss in the dipoles, wF .  For a “critical” value of the mean beta function, given by: 
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the emittance becomes independent of wF .  For a mean beta function below 
cxβ , 

increasing the length of the wiggler reduces the emittance.  For the current lattice, with a 
peak wiggler field of 2.15 T and a period of 0.27 m, we find the critical value of the mean 
beta function to be 9.7 m.  The actual value of the mean beta function is 6.66 m, so we 
are within the regime where increasing the wiggler length reduces the emittance.  With an 
energy loss ratio wF  of 1.39, there is an emittance reduction of nearly 20%, to 2.35 mm 

mrad. 
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5 Particle Dynamics 
The damping ring must have a good dynamic aperture to minimize particle loss, 
particularly during injection.  The aperture is limited by the sextupoles, which are used in 
the dispersive regions (the arcs) to correct chromaticity, and tuned to give the lattice 
overall chromaticity of zero both vertically and horizontally.  If the straight sections are 
assumed to contain only linear elements, and are tuned to give exact integer phase 
advances horizontally and vertically, then the dynamics of the lattice reduces to the 
dynamics of the TME cell.  In the current lattice design, the fractional parts of the 
horizontal phase advance over both straight sections are very close to zero, while the 
vertically, the fractional parts are 0.0478 across the wiggler section, and 0.514 across the 
FODO section.  The half-integer across the injection/extraction straight is a compromise, 
as the tune is to far from the integer to be comfortably fitted to it.  As a result, we expect 
the dynamics of the full lattice to match closely those of the TME cell in the horizontal 
plane, but not necessarily in the vertical plane. 
 
Horizontal phase space portraits are shown in Figure 10 for a single arc cell and for the 
full lattice.  They are remarkably similar, indicating the success of the tuning of the 
straight sections to integer values, in the approximation where all elements in the 
straights are linear.  The limit of stability is approximately 2.7 mm in the negative x 
direction, suggesting a horizontal dynamic aperture of 15 times the incoming beam size.  
We expect this to be adversely affected by the vertical dynamics, however. 
 
Vertical phase space portraits are shown in Figure 11, again for a single arc cell and for 
the full lattice, and with the observation point at the end of an arc cell.  This time we see a 
considerable reduction in the region of stability, with the dynamic aperture reduced from 
nearly 5mm (6.7 times the incoming beam size) to about 3mm (4 times the incoming 
beam size).  This is as expected, since the vertical tunings of the arc cell and the straight 
sections are less likely to give stable dynamics than the horizontal tunings. 
 
 

 
(a) 

 
(b) 

Figure 10 

Horizontal phase space portraits for (a) a single arc cell and (b) the full lattice.  The observation 
point is the end of an arc cell (as shown in Figure 3) in each case, where xβ = 0.760 m. 
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(a) 

 
(b) 

Figure 11 

Vertical phase space portraits for (a) a single arc cell and (b) the full lattice.  The observation point is 
the end of an arc cell (as shown in Figure 3) in each case, where yβ = 14.53 m. 

 
One approach to the optimization of the dynamic aperture of the TME cell is to minimize 
the geometric aberrations contributed by the sextupoles over each arc.  This corresponds 
to setting the phasor sum of the sextupole kicks equal to zero, and in practice means 
tuning the arcs close to integer values.  This kind of global correction scheme works well 
when one family of sextupoles is present, and less well when different families are 
interleaved.  Also, it is generally possible only to minimize the lowest order geometric 
aberrations, and higher order effects may still limit the dynamic aperture to very small 
values.  Our approach in the current lattice has been to try to arrange for exact 
cancellation of the geometric aberrations of the horizontally correcting chromatic 
sextupoles within each cell, by arranging for half-integer phase advances horizontally and 
vertically between these sextupoles.  This leads to some compromises in the tuning of the 
cell, and we have in particular not adopted the conditions for maximizing the dispersion 
for a given detuning factor.  Also, it is difficult then to arrange for cancellation of the 
geometric aberrations introduced by the vertically correcting chromatic sextupoles.  In 
practice, we have been able to go some way towards what we feel are conditions for good 
dynamic aperture, but have not carried out a rigorous investigation of all the effects and 
design options.  We present here some of the principal parameters and results describing 
the dynamic behavior of the lattice, for comparison with future studies. 
 
The dynamic aperture for a single arc cell is shown in Figure 12, and for the full lattice in 
Figure 13.  The observation point is the end of the TME cell as shown in Figure 3, where 
the values of the beta functions are 0.760 m horizontally, and 14.53 m vertically.  
Assuming a normalized emittance for the injected beam of 150 mm mrad horizontally 
and vertically, the dynamic aperture for the full lattice is 11.6 times the horizontal 
injected beam size, and 4 times the vertical injected beam size.  This is comparable to the 
dynamic aperture achieved for the 120 Hz damping ring, before the gradient was 
introduced into the dipole2.  We note that all tracking has been performed with “thin” 
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sextupoles; it is likely that tracking with elements of more realistic lengths will affect the 
dynamic aperture, but the effect is generally small. 
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Figure 12 

Dynamic aperture of a lattice constructed entirely from arc cells.  The 
particles were tracked through 200 cells, with the observation point at the 
end of the arc cell, where xβ = 0.760 m and yβ = 14.53 m.  The dynamic 

aperture is approximately )6.6,6.14(),( yxyx AA σσ= . 
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Figure 13 

Dynamic aperture of the full lattice, with the wiggler modeled as a 
linear element.  The particles were tracked through 200 turns, with the 
observation point at the end of the arc cell, where xβ = 0.760 m and 

yβ = 14.53 m.  The dynamic aperture is approximately 

)0.4,6.11(),( yxyx AA σσ= . 
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The dynamic aperture is limited by the nonlinearities in the arc cells, and (particularly for 
the vertical motion) the matching across the straight sections.  Assuming that the straight 
sections can be modified to give more favorable phase advances, we must look at the arc 
cells if we are to improve the dynamic aperture significantly.  At present, we limit 
ourselves to characterizing the arc cells in terms of the tune dependence on amplitude. 
 
The tune shifts with amplitude in the horizontal and vertical planes are shown in Figure 
14 and Figure 15 respectively.  Quadratic fits are made to the data points in each case.  In 
both cases, the tune shifts with amplitude are larger than we should like.  The vertical 
tune hits the third integer resonance at around 4 mm vertical amplitude.  The resonance is 
strongly driven but apparently not completely destructive at zero horizontal amplitude. 
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Figure 14 

Horizontal tune shift with amplitude.  The data points are fitted with a 
quadratic curve, of the form 0.7050-0.0189x-1021x2. 

More information on the dynamics can be revealed by a frequency map analysis; this is 
shown in Figure 7.  The plot is produced by setting up a regular grid of 4000 particles in 
co-ordinate space, from –2 mm to +2 mm horizontally, and from 0 mm to 3 mm 
vertically.  The particles are tracked for 256 passes through an arc cell, and the tunes 
determined by Fourier analysis.  Resonance lines up to ninth order are shown on the plot; 
the most dramatic effect is from the second order sum resonance crossing the middle of 
the diagram, but a ninth order coupling resonance, seen near the top of the diagram, is 
also driven. 
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Figure 15 

Vertical tune shift with amplitude.  The data points are fitted with a quadratic 
curve, of the form 0.2889-0.869y+2656y2. 
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Figure 16 

Frequency map analysis of an arc cell.  Resonance lines up to ninth order are shown. 
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6 Summary of Lattice Properties 
Table 1: “External” parameters. 

Bunches per train bN  95 

bunch-to-bunch spacing bτ  /ms 2.8 

kicker rise/fall time kτ  /ms 65 

collider repetition rate f  /Hz 180 

injected horizontal/vertical emittance injγε  /mm mrad 150 

extracted horizontal emittance extx,γε  /mm mrad <3 

extracted vertical emittance exty ,γε  /mm mrad <0.03 

 

Table 2: Principal lattice parameters. 

Energy E /GeV 1.98 
Number of bunch trains stored trainN  2 

Store time τN  4.47 
Circumference C /m 212.785 
Arc cell type  TME 
Arc cell length /m 4.12 
Length of each straight /m 32.23 
Number of arc cells  34 + 4×½ 
Normalized natural emittance 0γε  /mm mrad 2.34 

Damping times yx ττ ,  /ms 4.98, 4.97 

Assumed coupling κ  0.45 % 

Extracted horizontal emittance extx,γε /mm mrad 2.35 

Extracted vertical emittance exty ,γε  /mm mrad 0.0301 

Ratio of vertical equilibrium to 
extracted emittance extyy ,0 εε  0.35 

Momentum compaction α  4.35×10-4 

RF voltage rfV /MV 1.14 

RF acceptance rfε  2.4 % 

Rms energy spread δσ  0.0870 % 

Bunch length zσ  /mm 3.06 

Wiggler peak field wB̂  /T 2.15 

Wiggler period wλ  /m 0.27 

Wiggler total length wL  /m 27.744 

Integrated wiggler field ∫ sBwdˆ 2  /T2m 64.12 

Energy loss/turn from dipoles 0U /keV 247 
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Energy loss/turn from wiggler wU /keV 318 

Total energy loss/turn wUU +0  /keV 565 

Energy loss ratio wF  1.29 

Dynamic aperture yx AA ,  yx σσ 0.4,6.11  

Estimated momentum aperture δA  ±0.6% 
 

Table 3: Magnet parameters. 

Main dipole length 0L  /m 0.96 

Main dipole field 0B  /T 1.2 
Main dipole bending angle θ  /deg 10 
Arc quadrupole length /m 0.25 
Quadrupole pole-tip radius /mm 0.02 
Arc quadrupole pole-tip fields /T +1.07,-0.549 

7 Future Direction 
The lattice we have described above is in some respects suitable as a damping ring for the 
NLC operating at 180 Hz repetition rate.  In particular, it meets the requirements for 
extracted beam emittance, and takes advantage of the fact that the damping rings will 
operate in pairs, to reduce the length of wiggler required in any one ring.  Modifications 
and optimizations are needed in the following areas: 
• the dynamic aperture needs to be improved, possibly by allowing a field gradient in 

the main dipoles, and adjusting the phase advance across the straight sections; 
• the chromatic properties need to be improved, to give a larger momentum aperture; 
• the lattice circumference could be reduced, by reducing the number of arc cells, to 

take advantage of the emittance reduction provided by the wiggler; 
• the spacing between individual elements needs to be examined, to see whether the 

current layout is practically possible, or to see if space savings could be made; 
• the effects of, and compensation schemes for, the nonlinear components of the 

wiggler field need to be investigated. 
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